
1 Boolean Logic

Such simple things, And we make of them something so complex it defeats us, Almost.

—John Ashbery (b. 1927), American poet

Every digital device—be it a personal computer, a cellular telephone, or a network

router—is based on a set of chips designed to store and process information. Al-

though these chips come in different shapes and forms, they are all made from the

same building blocks: Elementary logic gates. The gates can be physically imple-

mented in many different materials and fabrication technologies, but their logical

behavior is consistent across all computers. In this chapter we start out with one

primitive logic gate—Nand—and build all the other logic gates from it. The result is

a rather standard set of gates, which will be later used to construct our computer’s

processing and storage chips. This will be done in chapters 2 and 3, respectively.

All the hardware chapters in the book, beginning with this one, have the same

structure. Each chapter focuses on a well-defined task, designed to construct or inte-

grate a certain family of chips. The prerequisite knowledge needed to approach this

task is provided in a brief Background section. The next section provides a complete

Specification of the chips’ abstractions, namely, the various services that they should

deliver, one way or another. Having presented the what, a subsequent Implemen-

tation section proposes guidelines and hints about how the chips can be actually

implemented. A Perspective section rounds up the chapter with concluding com-

ments about important topics that were left out from the discussion. Each chapter

ends with a technical Project section. This section gives step-by-step instructions for

actually building the chips on a personal computer, using the hardware simulator

supplied with the book.

This being the first hardware chapter in the book, the Background section is

somewhat lengthy, featuring a special section on hardware description and simulation

tools.



1.1 Background

This chapter focuses on the construction of a family of simple chips called Boolean

gates. Since Boolean gates are physical implementations of Boolean functions, we

start with a brief treatment of Boolean algebra. We then show how Boolean gates

implementing simple Boolean functions can be interconnected to deliver the func-

tionality of more complex chips. We conclude the background section with a descrip-

tion of how hardware design is actually done in practice, using software simulation

tools.

1.1.1 Boolean Algebra

Boolean algebra deals with Boolean (also called binary) values that are typically

labeled true/false, 1/0, yes/no, on/off, and so forth. We will use 1 and 0. A Boolean

function is a function that operates on binary inputs and returns binary outputs.

Since computer hardware is based on the representation and manipulation of binary

values, Boolean functions play a central role in the specification, construction, and

optimization of hardware architectures. Hence, the ability to formulate and analyze

Boolean functions is the first step toward constructing computer architectures.

Truth Table Representation The simplest way to specify a Boolean function is to

enumerate all the possible values of the function’s input variables, along with the

function’s output for each set of inputs. This is called the truth table representation of

the function, illustrated in figure 1.1.

The first three columns of figure 1.1 enumerate all the possible binary values of the

function’s variables. For each one of the 2n possible tuples v1 . . . vn (here n ¼ 3), the

last column gives the value of f ðv1 . . . vnÞ.

Boolean Expressions In addition to the truth table specification, a Boolean function

can also be specified using Boolean operations over its input variables. The basic

Boolean operators that are typically used are ‘‘And’’ (x And y is 1 exactly when both

x and y are 1) ‘‘Or’’ (x Or y is 1 exactly when either x or y or both are 1), and ‘‘Not’’

(Not x is 1 exactly when x is 0). We will use a common arithmetic-like notation for

these operations: x � y (or xy) means x And y, xþ y means x Or y, and x means

Not x.

To illustrate, the function defined in figure 1.1 is equivalently given by the Boolean

expression f ðx; y; zÞ ¼ ðxþ yÞ � z. For example, let us evaluate this expression on the
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inputs x ¼ 0, y ¼ 1, z ¼ 0 (third row in the table). Since y is 1, it follows that

xþ y ¼ 1 and thus 1 � 0 ¼ 1 � 1 ¼ 1. The complete verification of the equivalence

between the expression and the truth table is achieved by evaluating the expression

on each of the eight possible input combinations, verifying that it yields the same

value listed in the table’s right column.

Canonical Representation As it turns out, every Boolean function can be expressed

using at least one Boolean expression called the canonical representation. Starting

with the function’s truth table, we focus on all the rows in which the function has

value 1. For each such row, we construct a term created by And-ing together literals

(variables or their negations) that fix the values of all the row’s inputs. For example,

let us focus on the third row in figure 1.1, where the function’s value is 1. Since the

variable values in this row are x ¼ 0, y ¼ 1, z ¼ 0, we construct the term xyz. Fol-

lowing the same procedure, we construct the terms xyz and xyz for rows 5 and 7.

Now, if we Or-together all these terms (for all the rows where the function has value

1), we get a Boolean expression that is equivalent to the given truth table. Thus the

canonical representation of the Boolean function shown in figure 1.1 is f ðx; y; zÞ ¼
xyzþ xyzþ xyz. This construction leads to an important conclusion: Every Boolean

function, no matter how complex, can be expressed using three Boolean operators

only: And, Or, and Not.

Two-Input Boolean Functions An inspection of figure 1.1 reveals that the number of

Boolean functions that can be defined over n binary variables is 22
n

. For example,

the sixteen Boolean functions spanned by two variables are listed in figure 1.2. These

functions were constructed systematically, by enumerating all the possible 4-wise com-

binations of binary values in the four right columns. Each function has a conventional

x y z f ðx; y; zÞ
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Figure 1.1 Truth table representation of a Boolean function (example).
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name that seeks to describe its underlying operation. Here are some examples: The

name of the Nor function is shorthand for Not-Or: Take the Or of x and y, then

negate the result. The Xor function—shorthand for ‘‘exclusive or’’—returns 1 when

its two variables have opposing truth-values and 0 otherwise. Conversely, the

Equivalence function returns 1 when the two variables have identical truth-values.

The If-x-then-y function (also known as x ! y, or ‘‘x Implies y’’) returns 1 when x is

0 or when both x and y are 1. The other functions are self-explanatory.

The Nand function (as well as the Nor function) has an interesting theoretical

property: Each one of the operations And, Or, and Not can be constructed from it,

and it alone (e.g., x Or y ¼ ðx Nand xÞ Nand ðy Nand yÞ. And since every Boolean

function can be constructed from And, Or, and Not operations using the canonical

representation method, it follows that every Boolean function can be constructed

from Nand operations alone. This result has far-reaching practical implications:

Once we have in our disposal a physical device that implements Nand, we can use

many copies of this device (wired in a certain way) to implement in hardware any

Boolean function.

x 0 0 1 1
Function

y 0 1 0 1

Constant 0 0 0 0 0 0

And x � y 0 0 0 1

x And Not y x � y 0 0 1 0

x x 0 0 1 1

Not x And y x � y 0 1 0 0

y y 0 1 0 1

Xor x � yþ x � y 0 1 1 0

Or xþ y 0 1 1 1

Nor xþ y 1 0 0 0

Equivalence x � yþ x � y 1 0 0 1

Not y y 1 0 1 0

If y then x xþ y 1 0 1 1

Not x x 1 1 0 0

If x then y xþ y 1 1 0 1

Nand x � y 1 1 1 0

Constant 1 1 1 1 1 1

Figure 1.2 All the Boolean functions of two variables.
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1.1.2 Gate Logic

A gate is a physical device that implements a Boolean function. If a Boolean function

f operates on n variables and returns m binary results (in all our examples so far, m

was 1), the gate that implements f will have n input pins and m output pins. When we

put some values v1 . . . vn in the gate’s input pins, the gate’s ‘‘logic’’—its internal

structure—should compute and output f ðv1 . . . vnÞ. And just like complex Boolean

functions can be expressed in terms of simpler functions, complex gates are com-

posed from more elementary gates. The simplest gates of all are made from tiny

switching devices, called transistors, wired in a certain topology designed to effect the

overall gate functionality.

Although most digital computers today use electricity to represent and transmit

binary data from one gate to another, any alternative technology permitting switch-

ing and conducting capabilities can be employed. Indeed, during the last fifty years,

researchers have built many hardware implementations of Boolean functions, includ-

ing magnetic, optical, biological, hydraulic, and pneumatic mechanisms. Today, most

gates are implemented as transistors etched in silicon, packaged as chips. In this book

we use the words chip and gate interchangeably, tending to use the term gates for

simple chips.

The availability of alternative switching technology options, on the one hand, and

the observation that Boolean algebra can be used to abstract the behavior of any

such technology, on the other, is extremely important. Basically, it implies that

computer scientists don’t have to worry about physical things like electricity, circuits,

switches, relays, and power supply. Instead, computer scientists can be content with

the abstract notions of Boolean algebra and gate logic, trusting that someone else

(the physicists and electrical engineers—bless their souls) will figure out how to

actually realize them in hardware. Hence, a primitive gate (see figure 1.3) can be

viewed as a black box device that implements an elementary logical operation in one

way or another—we don’t care how. A hardware designer starts from such primitive

gates and designs more complicated functionality by interconnecting them, leading to

the construction of composite gates.

outAnd
b

a a

b outOr Notin out

Figure 1.3 Standard symbolic notation of some elementary logic gates.
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Primitive and Composite Gates Since all logic gates have the same input and out-

put semantics (0’s and 1’s), they can be chained together, creating composite gates of

arbitrary complexity. For example, suppose we are asked to implement the 3-way

Boolean function Andða; b; cÞ. Using Boolean algebra, we can begin by observing

that a � b � c ¼ ða � bÞ � c, or, using prefix notation, Andða; b; cÞ ¼ AndðAndða; bÞ; cÞ.
Next, we can use this result to construct the composite gate depicted in figure 1.4.

The construction described in figure 1.4 is a simple example of gate logic, also

called logic design. Simply put, logic design is the art of interconnecting gates in

order to implement more complex functionality, leading to the notion of composite

gates. Since composite gates are themselves realizations of (possibly complex)

Boolean functions, their ‘‘outside appearance’’ (e.g., left side of figure 1.4) looks just

like that of primitive gates. At the same time, their internal structure can be rather

complex.

We see that any given logic gate can be viewed from two different perspectives:

external and internal. The right-hand side of figure 1.4 gives the gate’s internal

architecture, or implementation, whereas the left side shows only the gate interface,

namely, the input and output pins that it exposes to the outside world. The former is

relevant only to the gate designer, whereas the latter is the right level of detail for

other designers who wish to use the gate as an abstract off-the-shelf component,

without paying attention to its internal structure.

Let us consider another logic design example—that of a Xor gate. As discussed

before, Xorða; bÞ is 1 exactly when either a is 1 and b is 0, or when a is 0 and b is

1. Said otherwise, Xorða; bÞ ¼ OrðAndða;NotðbÞÞ;AndðNotðaÞ; bÞÞ. This definition

leads to the logic design shown in figure 1.5.

Note that the gate interface is unique: There is only one way to describe it, and this

is normally done using a truth table, a Boolean expression, or some verbal specifica-

out
a
b And
c

If a=b=c=1 then out=1
else out=0

a
And

b

And
c

out

Gate implementationGate interface

Figure 1.4 Composite implementation of a three-way And gate. The rectangle on the right
defines the conceptual boundaries of the gate interface.
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tion. This interface, however, can be realized using many different implementations,

some of which will be better than others in terms of cost, speed, and simplicity. For

example, the Xor function can be implemented using four, rather than five, And, Or,

and Not gates. Thus, from a functional standpoint, the fundamental requirement of

logic design is that the gate implementation will realize its stated interface, in one way

or another. From an efficiency standpoint, the general rule is to try to do more with

less, that is, use as few gates as possible.

To sum up, the art of logic design can be described as follows: Given a gate spec-

ification (interface), find an efficient way to implement it using other gates that

were already implemented. This, in a nutshell, is what we will do in the rest of this

chapter.

1.1.3 Actual Hardware Construction

Having described the logic of composing complex gates from simpler ones, we are

now in a position to discuss how gates are actually built. Let us start with an inten-

tionally naı̈ve example.

Suppose we open a chip fabrication shop in our home garage. Our first contract is

to build a hundred Xor gates. Using the order’s downpayment, we purchase a sol-

dering gun, a roll of copper wire, and three bins labeled ‘‘And gates,’’ ‘‘Or gates,’’

and ‘‘Not gates,’’ each containing many identical copies of these elementary logic

gates. Each of these gates is sealed in a plastic casing that exposes some input and

output pins, as well as a power supply plug. To get started, we pin figure 1.5 to our

garage wall and proceed to realize it using our hardware. First, we take two And

gates, two Not gates, and one Or gate, and mount them on a board according to the

Xor
a

b
out

0     0       0
0     1       1
1     0       1
1     1       0

a     b      out

And

And

Or out

a

b

Figure 1.5 Xor gate, along with a possible implementation.
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figure’s layout. Next, we connect the chips to one another by running copper wires

among them and by soldering the wire ends to the respective input/output pins.

Now, if we follow the gate diagram carefully, we will end up having three exposed

wire ends. We then solder a pin to each one of these wire ends, seal the entire device

(except for the three pins) in a plastic casing, and label it ‘‘Xor.’’ We can repeat this

assembly process many times over. At the end of the day, we can store all the

chips that we’ve built in a new bin and label it ‘‘Xor gates.’’ If we (or other people)

are asked to construct some other chips in the future, we’ll be able to use these Xor

gates as elementary building blocks, just as we used the And, Or, and Not gates

before.

As the reader has probably sensed, the garage approach to chip production leaves

much to be desired. For starters, there is no guarantee that the given chip diagram is

correct. Although we can prove correctness in simple cases like Xor, we cannot do so

in many realistically complex chips. Thus, we must settle for empirical testing: Build

the chip, connect it to a power supply, activate and deactivate the input pins in vari-

ous configurations, and hope that the chip outputs will agree with its specifications. If

the chip fails to deliver the desired outputs, we will have to tinker with its physical

structure—a rather messy affair. Further, even if we will come up with the right de-

sign, replicating the chip assembly process many times over will be a time-consuming

and error-prone affair. There must be a better way!

1.1.4 Hardware Description Language (HDL)

Today, hardware designers no longer build anything with their bare hands. Instead,

they plan and optimize the chip architecture on a computer workstation, using

structured modeling formalisms like Hardware Description Language, or HDL (also

known as VHDL, where V stands for Virtual ). The designer specifies the chip struc-

ture by writing an HDL program, which is then subjected to a rigorous battery of

tests. These tests are carried out virtually, using computer simulation: A special

software tool, called a hardware simulator, takes the HDL program as input and

builds an image of the modeled chip in memory. Next, the designer can instruct the

simulator to test the virtual chip on various sets of inputs, generating simulated chip

outputs. The outputs can then be compared to the desired results, as mandated by

the client who ordered the chip built.

In addition to testing the chip’s correctness, the hardware designer will typi-

cally be interested in a variety of parameters such as speed of computation, energy

consumption, and the overall cost implied by the chip design. All these param-
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eters can be simulated and quantified by the hardware simulator, helping the de-

signer optimize the design until the simulated chip delivers desired cost/performance

levels.

Thus, using HDL, one can completely plan, debug, and optimize the entire chip

before a single penny is spent on actual production. When the HDL program is

deemed complete, that is, when the performance of the simulated chip satisfies the

client who ordered it, the HDL program can become the blueprint from which many

copies of the physical chip can be stamped in silicon. This final step in the chip

life cycle—from an optimized HDL program to mass production—is typically out-

sourced to companies that specialize in chip fabrication, using one switching tech-

nology or another.

Example: Building a Xor Gate As we have seen in figures 1.2 and 1.5, one way to

define exclusive or is Xorða; bÞ ¼ OrðAndða;NotðbÞÞ;AndðNotðaÞ; bÞÞ. This logic can
be expressed either graphically, as a gate diagram, or textually, as an HDL program.

The latter program is written in the HDL variant used throughout this book, defined

in appendix A. See figure 1.6 for the details.

Explanation An HDL definition of a chip consists of a header section and a parts

section. The header section specifies the chip interface, namely the chip name and the

names of its input and output pins. The parts section describes the names and topol-

ogy of all the lower-level parts (other chips) from which this chip is constructed. Each

part is represented by a statement that specifies the part name and the way it is con-

nected to other parts in the design. Note that in order to write such statements legi-

bly, the HDL programmer must have a complete documentation of the underlying

parts’ interfaces. For example, figure 1.6 assumes that the input and output pins of

the Not gate are labeled in and out, and those of And and Or are labeled a, b and

out. This API-type information is not obvious, and one must have access to it before

one can plug the chip parts into the present code.

Inter-part connections are described by creating and connecting internal pins,

as needed. For example, consider the bottom of the gate diagram, where the output

of a Not gate is piped into the input of a subsequent And gate. The HDL code

describes this connection by the pair of statements Not(...,out=nota) and

And(a=nota,...). The first statement creates an internal pin (outbound wire)

named nota, feeding out into it. The second statement feeds the value of nota

into the a input of an And gate. Note that pins may have an unlimited fan out.

For example, in figure 1.6, each input is simultaneously fed into two gates. In gate
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diagrams, multiple connections are described using forks. In HDL, the existence of

forks is implied by the code.

Testing Rigorous quality assurance mandates that chips be tested in a specific, rep-

licable, and well-documented fashion. With that in mind, hardware simulators are

usually designed to run test scripts, written in some scripting language. For example,

the test script in figure 1.6 is written in the scripting language understood by the

hardware simulator supplied with the book. This scripting language is described fully

in appendix B.

Let us give a brief description of the test script from figure 1.6. The first two lines

of the test script instruct the simulator to load the Xor.hdl program and get ready to

b

a

b

a

a

And

And

Or out

a

b

in

in

notb

nota

w1

w2

out

out

out

out

b
out

HDL program (Xor.hdl) Test script (Xor.tst) Output file (Xor.out)

/* Xor (exclusive or) gate:

If a<>b out=1 else out=0. */

CHIP Xor {

IN a, b;

OUT out;

PARTS:

Not(in=a, out=nota);

Not(in=b, out=notb);

And(a=a, b=notb, out=w1);

And(a=nota, b=b, out=w2);

Or(a=w1, b=w2, out=out);

}

load Xor.hdl,

output-list a, b, out;

set a 0, set b 0,

eval, output;

set a 0, set b 1,

eval, output;

set a 1, set b 0,

eval, output;

set a 1, set b 1,

eval, output;

a b out

0 0 0

0 1 1

1 0 1

1 1 0

Figure 1.6 HDL implementation of a Xor gate.
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print the values of selected variables. Next, the script lists a series of testing scenarios,

designed to simulate the various contingencies under which the Xor chip will have to

operate in ‘‘real-life’’ situations. In each scenario, the script instructs the simulator to

bind the chip inputs to certain data values, compute the resulting output, and record

the test results in a designated output file. In the case of simple gates like Xor, one

can write an exhaustive test script that enumerates all the possible input values of the

gate. The resulting output file (right side of figure 1.6) can then be viewed as a com-

plete empirical proof that the chip is well designed. The luxury of such certitude is

not feasible in more complex chips, as we will see later.

1.1.5 Hardware Simulation

Since HDL is a hardware construction language, the process of writing and debug-

ging HDL programs is quite similar to software development. The main difference is

that instead of writing code in a language like Java, we write it in HDL, and instead

of using a compiler to translate and test the code, we use a hardware simulator. The

hardware simulator is a computer program that knows how to parse and interpret

HDL code, turn it into an executable representation, and test it according to the

specifications of a given test script. There exist many commercial hardware simu-

lators on the market, and these vary greatly in terms of cost, complexity, and ease of

use. Together with this book we provide a simple (and free!) hardware simulator

that is sufficiently powerful to support sophisticated hardware design projects. In

particular, the simulator provides all the necessary tools for building, testing, and

integrating all the chips presented in the book, leading to the construction of a

general-purpose computer. Figure 1.7 illustrates a typical chip simulation session.

1.2 Specification

This section specifies a typical set of gates, each designed to carry out a common

Boolean operation. These gates will be used in the chapters that follow to construct

the full architecture of a typical modern computer. Our starting point is a single

primitive Nand gate, from which all other gates will be derived recursively. Note that

we provide only the gates’ specifications, or interfaces, delaying implementation

details until a subsequent section. Readers who wish to construct the specified gates

in HDL are encouraged to do so, referring to appendix A as needed. All the gates

can be built and simulated on a personal computer, using the hardware simulator

supplied with the book.
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test 
script

HDL 
program

current pin 
values

simulator
controls

output file

typical 
simulation step

Figure 1.7 A screen shot of simulating an Xor chip on the hardware simulator. The simulator
state is shown just after the test script has completed running. The pin values correspond to the
last simulation step (a ¼ b ¼ 1). Note that the output file generated by the simulation is con-
sistent with the Xor truth table, indicating that the loaded HDL program delivers a correct
Xor functionality. The compare file, not shown in the figure and typically specified by the
chip’s client, has exactly the same structure and contents as that of the output file. The fact
that the two files agree with each other is evident from the status message displayed at the
bottom of the screen.
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1.2.1 The Nand Gate

The starting point of our computer architecture is the Nand gate, from which all

other gates and chips are built. The Nand gate is designed to compute the following

Boolean function:

a b Nandða; bÞ
0 0 1

0 1 1

1 0 1

1 1 0

Throughout the book, we use ‘‘chip API boxes’’ to specify chips. For each chip, the

API specifies the chip name, the names of its input and output pins, the function or

operation that the chip effects, and an optional comment.

Chip name: Nand

Inputs: a, b

Outputs: out

Function: If a=b=1 then out=0 else out=1

Comment: This gate is considered primitive and thus there is

no need to implement it.

1.2.2 Basic Logic Gates

Some of the logic gates presented here are typically referred to as ‘‘elementary’’ or

‘‘basic.’’ At the same time, every one of them can be composed from Nand gates

alone. Therefore, they need not be viewed as primitive.

Not The single-input Not gate, also known as ‘‘converter,’’ converts its input from

0 to 1 and vice versa. The gate API is as follows:

Chip name: Not

Inputs: in

Outputs: out

Function: If in=0 then out=1 else out=0.
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And The And function returns 1 when both its inputs are 1, and 0 otherwise.

Chip name: And

Inputs: a, b

Outputs: out

Function: If a=b=1 then out=1 else out=0.

Or The Or function returns 1 when at least one of its inputs is 1, and 0 otherwise.

Chip name: Or

Inputs: a, b

Outputs: out

Function: If a=b=0 then out=0 else out=1.

Xor The Xor function, also known as ‘‘exclusive or,’’ returns 1 when its two inputs

have opposing values, and 0 otherwise.

Chip name: Xor

Inputs: a, b

Outputs: out

Function: If a=/b then out=1 else out=0.

Multiplexor A multiplexor (figure 1.8) is a three-input gate that uses one of the

inputs, called ‘‘selection bit,’’ to select and output one of the other two inputs, called

‘‘data bits.’’ Thus, a better name for this device might have been selector. The

name multiplexor was adopted from communications systems, where similar

devices are used to serialize (multiplex) several input signals over a single output

wire.

Chip name: Mux

Inputs: a, b, sel

Outputs: out

Function: If sel=0 then out=a else out=b.
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Demultiplexor A demultiplexor (figure 1.9) performs the opposite function of a

multiplexor: It takes a single input and channels it to one of two possible outputs

according to a selector bit that specifies which output to chose.

Chip name: DMux

Inputs: in, sel

Outputs: a, b

Function: If sel=0 then {a=in, b=0} else {a=0, b=in}.

1.2.3 Multi-Bit Versions of Basic Gates

Computer hardware is typically designed to operate on multi-bit arrays called

‘‘buses.’’ For example, a basic requirement of a 32-bit computer is to be able to

compute (bit-wise) an And function on two given 32-bit buses. To implement this

operation, we can build an array of 32 binary And gates, each operating separately

a b sel out sel out

0 0 0 0 0 a

0 1 0 0 1 b

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 1

a

b

sel

outMux

Figure 1.8 Multiplexor. The table at the top right is an abbreviated version of the truth table
on the left.

sel a b

0 in 0

1 0 in

a

b

sel

in DMux

Figure 1.9 Demultiplexor.
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on a pair of bits. In order to enclose all this logic in one package, we can encapsulate

the gates array in a single chip interface consisting of two 32-bit input buses and one

32-bit output bus.

This section describes a typical set of such multi-bit logic gates, as needed for the

construction of a typical 16-bit computer. We note in passing that the architecture of

n-bit logic gates is basically the same irrespective of n’s value.

When referring to individual bits in a bus, it is common to use an array syntax.

For example, to refer to individual bits in a 16-bit bus named data, we use the no-

tation data[0], data[1],..., data[15].

Multi-Bit Not An n-bit Not gate applies the Boolean operation Not to every one of

the bits in its n-bit input bus:

Chip name: Not16

Inputs: in[16] // a 16-bit pin

Outputs: out[16]

Function: For i=0..15 out[i]=Not(in[i]).

Multi-Bit And An n-bit And gate applies the Boolean operation And to every one

of the n bit-pairs arrayed in its two n-bit input buses:

Chip name: And16

Inputs: a[16], b[16]

Outputs: out[16]

Function: For i=0..15 out[i]=And(a[i],b[i]).

Multi-Bit Or An n-bit Or gate applies the Boolean operation Or to every one of the

n bit-pairs arrayed in its two n-bit input buses:

Chip name: Or16

Inputs: a[16], b[16]

Outputs: out[16]

Function: For i=0..15 out[i]=Or(a[i],b[i]).
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Multi-Bit Multiplexor An n-bit multiplexor is exactly the same as the binary multi-

plexor described in figure 1.8, except that the two inputs are each n-bit wide; the

selector is a single bit.

Chip name: Mux16

Inputs: a[16], b[16], sel

Outputs: out[16]

Function: If sel=0 then for i=0..15 out[i]=a[i]

else for i=0..15 out[i]=b[i].

1.2.4 Multi-Way Versions of Basic Gates

Many 2-way logic gates that accept two inputs have natural generalization to multi-

way variants that accept an arbitrary number of inputs. This section describes a set

of multi-way gates that will be used subsequently in various chips in our computer

architecture. Similar generalizations can be developed for other architectures, as

needed.

Multi-Way Or An n-way Or gate outputs 1 when at least one of its n bit inputs is 1,

and 0 otherwise. Here is the 8-way variant of this gate:

Chip name: Or8Way

Inputs: in[8]

Outputs: out

Function: out=Or(in[0],in[1],...,in[7]).

Multi-Way/Multi-Bit Multiplexor An m-way n-bit multiplexor selects one of m n-

bit input buses and outputs it to a single n-bit output bus. The selection is speci-

fied by a set of k control bits, where k ¼ log2 m. Figure 1.10 depicts a typical

example.

The computer platform that we develop in this book requires two variations of this

chip: A 4-way 16-bit multiplexor and an 8-way 16-bit multiplexor:
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Chip name: Mux4Way16

Inputs: a[16], b[16], c[16], d[16], sel[2]

Outputs: out[16]

Function: If sel=00 then out=a else if sel=01 then out=b

else if sel=10 then out=c else if sel=11 then out=d

Comment: The assignment operations mentioned above are all

16-bit. For example, "out=a" means "for i=0..15

out[i]=a[i]".

Chip name: Mux8Way16

Inputs: a[16],b[16],c[16],d[16],e[16],f[16],g[16],h[16],

sel[3]

Outputs: out[16]

Function: If sel=000 then out=a else if sel=001 then out=b

else if sel=010 out=c ... else if sel=111 then out=h

Comment: The assignment operations mentioned above are all

16-bit. For example, "out=a" means "for i=0..15

out[i]=a[i]".

Multi-Way/Multi-Bit Demultiplexor An m-way n-bit demultiplexor (figure 1.11)

channels a single n-bit input into one of m possible n-bit outputs. The selection is

specified by a set of k control bits, where k ¼ log2 m.

The specific computer platform that we will build requires two variations of this

chip: A 4-way 1-bit demultiplexor and an 8-way 1-bit multiplexor, as follows.

sel[1] sel[0] out

0 0 a

0 1 b

1 0 c

1 1 d

a

out
b

c
4-way
Mux

sel[0]sel[1]

d a,b,c,d and
out are each
16-bit wide

Figure 1.10 4-way multiplexor. The width of the input and output buses may vary.
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Chip name: DMux4Way

Inputs: in, sel[2]

Outputs: a, b, c, d

Function: If sel=00 then {a=in, b=c=d=0}

else if sel=01 then {b=in, a=c=d=0}

else if sel=10 then {c=in, a=b=d=0}

else if sel=11 then {d=in, a=b=c=0}.

Chip name: DMux8Way

Inputs: in, sel[3]

Outputs: a, b, c, d, e, f, g, h

Function: If sel=000 then {a=in, b=c=d=e=f=g=h=0}

else if sel=001 then {b=in, a=c=d=e=f=g=h=0}

else if sel=010 ...

...

else if sel=111 then {h=in, a=b=c=d=e=f=g=0}.

1.3 Implementation

Similar to the role of axioms in mathematics, primitive gates provide a set of ele-

mentary building blocks from which everything else can be built. Operationally,

primitive gates have an ‘‘off-the-shelf ’’ implementation that is supplied externally.

Thus, they can be used in the construction of other gates and chips without worrying

about their internal design. In the computer architecture that we are now beginning

sel[1] sel[0] a b c d

0 0 in 0 0 0

0 1 0 in 0 0

1 0 0 0 in 0

1 1 0 0 0 in

in
4-way
DMux

sel[0]sel[1]

Figure 1.11 4-way demultiplexor.
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to build, we have chosen to base all the hardware on one primitive gate only: Nand.

We now turn to outlining the first stage of this bottom-up hardware construction

project, one gate at a time.

Our implementation guidelines are intentionally partial, since we want you to dis-

cover the actual gate architectures yourself. We reiterate that each gate can be imple-

mented in more than one way; the simpler the implementation, the better.

Not: The implementation of a unary Not gate from a binary Nand gate is simple.

Tip: Think positive.

And: Once again, the gate implementation is simple. Tip: Think negative.

Or/Xor: These functions can be defined in terms of some of the Boolean functions

implemented previously, using some simple Boolean manipulations. Thus, the re-

spective gates can be built using previously built gates.

Multiplexor/Demultiplexor: Likewise, these gates can be built using previously built

gates.

Multi-Bit Not/And/Or Gates: Since we already know how to implement the ele-

mentary versions of these gates, the implementation of their n-ary versions is simply

a matter of constructing arrays of n elementary gates, having each gate operate sep-

arately on its bit inputs. This implementation task is rather boring, but it will carry

its weight when these multi-bit gates are used in more complex chips, as described in

subsequent chapters.

Multi-Bit Multiplexor: The implementation of an n-ary multiplexor is simply a

matter of feeding the same selection bit to every one of n binary multiplexors. Again,

a boring task resulting in a very useful chip.

Multi-Way Gates: Implementation tip: Think forks.

1.4 Perspective

This chapter described the first steps taken in an applied digital design project. In the

next chapter we will build more complicated functionality using the gates built here.
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Although we have chosen to use Nand as our basic building block, other approaches

are possible. For example, one can build a complete computer platform using Nor

gates alone, or, alternatively, a combination of And, Or, and Not gates. These con-

structive approaches to logic design are theoretically equivalent, just as all theorems

in geometry can be founded on different sets of axioms as alternative points of de-

parture. The theory and practice of such constructions are covered in standard text-

books about digital design or logic design.

Throughout the chapter, we paid no attention to efficiency considerations such as

the number of elementary gates used in constructing a composite gate or the number

of wire crossovers implied by the design. Such considerations are critically important

in practice, and a great deal of computer science and electrical engineering expertise

focuses on optimizing them. Another issue we did not address at all is the physical

implementation of gates and chips using the laws of physics, for example, the role

of transistors embedded in silicon. There are of course several such implementation

options, each having its own characteristics (speed, power requirements, production

cost, etc.). Any nontrivial coverage of these issues requires some background in

electronics and physics.

1.5 Project

Objective Implement all the logic gates presented in the chapter. The only building

blocks that you can use are primitive Nand gates and the composite gates that you

will gradually build on top of them.

Resources The only tool that you need for this project is the hardware simulator

supplied with the book. All the chips should be implemented in the HDL language

specified in appendix A. For each one of the chips mentioned in the chapter, we

provide a skeletal .hdl program (text file) with a missing implementation part. In

addition, for each chip we provide a .tst script file that tells the hardware simulator

how to test it, along with the correct output file that this script should generate,

called .cmp or ‘‘compare file.’’ Your job is to complete the missing implementation

parts of the supplied .hdl programs.

Contract When loaded into the hardware simulator, your chip design (modified

.hdl program), tested on the supplied .tst file, should produce the outputs listed in

the supplied .cmp file. If that is not the case, the simulator will let you know.
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Tips The Nand gate is considered primitive and thus there is no need to build it:

Whenever you use Nand in one of your HDL programs, the simulator will auto-

matically invoke its built-in tools/builtIn/Nand.hdl implementation. We rec-

ommend implementing the other gates in this project in the order in which they

appear in the chapter. However, since the builtIn directory features working ver-

sions of all the chips described in the book, you can always use these chips without

defining them first: The simulator will automatically use their built-in versions.

For example, consider the skeletal Mux.hdl program supplied in this project.

Suppose that for one reason or another you did not complete this program’s im-

plementation, but you still want to use Mux gates as internal parts in other chip

designs. This is not a problem, thanks to the following convention. If our simula-

tor fails to find a Mux.hdl file in the current directory, it automatically invokes a

built-in Mux implementation, pre-supplied with the simulator’s software. This built-

in implementation—a Java class stored in the builtIn directory—has the same in-

terface and functionality as those of the Mux gate described in the book. Thus, if you

want the simulator to ignore one or more of your chip implementations, simply move

the corresponding .hdl files out of the current directory.

Steps We recommend proceeding in the following order:

0. The hardware simulator needed for this project is available in the tools direc-

tory of the book’s software suite.

1. Read appendix A, sections A1–A6 only.

2. Go through the hardware simulator tutorial, parts I, II, and III only.

3. Build and simulate all the chips specified in the projects/01 directory.
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